Display Accessibility Tools

Accessibility Tools

Grayscale

Highlight Links

Change Contrast

Increase Text Size

Increase Letter Spacing

Dyslexia Friendly Font

Increase Cursor Size

Share this story

Evans's Lab Research Highlights Role of Dead Bacteria and Antibiotic Resistance in Soil

The World Health Organization has called antibiotic resistance one of the biggest threats to food security. Infectious bacteria that can evade antibiotic treatments are huge concerns for the well-being of livestock, the food industry and the public. “Outside of medicine antibiotic resistance isn’t talked about maybe as urgently as it should be,” Sarah Evans said. “We thought these were processes that needed to be studied more in the field.”

Evans and her team took a closer look at one of those processes: how DNA from dead bacteria could introduce antibiotic resistance to living bacteria in the soil. In better understanding that process, the team is also looking to find ways to help stop it. “People think a lot about live bacteria,” said Heather Kittredge, who led the research for Evans’s lab as a doctoral student. “Maybe we should be thinking about the dead ones, too. They have biological activity beyond death. Soil is still somewhat of a black box,” Heather said, who is now a postdoctoral researcher at the University of Connecticut. “We wanted to know how this happens in the wild, what factors contribute to it and what we can do about it.”

To learn all this, the team collected soil samples from sites around W. K. Kellogg Biological Station, where Evans is also a faculty member. They sterilized the soil and added living cells of the soil bacteria Pseudomonas stutzeri along with DNA from antibiotic resistant forms of P. stutzeri. They could then observe how often the living cells incorporated the DNA under different conditions.

What they found is that live bacteria could integrate the DNA even when it was present at low concentrations and live cells that picked up DNA persisted throughout the 15-day duration of the experiments. But DNA is known to survive in soil longer than that, Heather added.

“Overall, this work demonstrates that dead bacteria … are an overlooked path to antibiotic resistance,” the team wrote in its paper. The researchers also noted that living cells were more likely to integrate DNA from dead cells when they started off closer to it, which wasn’t surprising. Living cells need to touch the DNA in order to collect it.

What was surprising, though, was the role of soil moisture. Although the living cells collected DNA over a range of realistic moisture levels, they were most efficient in slightly drier conditions. But bacteria are more mobile in wet soil, which would presumably increase their likelihood of bumping into DNA. “They also grow at higher rates in higher moisture,” Heather explained. “When they grow the most isn’t the same as when the have the highest rates of gene transfer.”

So why aren’t bacteria that are more mobile and more prolific better at picking up genes? That’s something the team wants to investigate, in part because understanding it could present opportunities to slow gene transfer. In the meantime, though, this research has already offered ideas on stemming horizontal transfer of antibiotic resistant genes on farms. 

For example, manure from livestock is used as fertilizer on farmland used to grow food crops. To help in the battle against antibiotic resistance, manure is often heat-treated to kill any bacteria present.

“But the temperature at which bacteria die and at which DNA is destroyed are different,” Heather said. “Increasing the temperature treatment to degrade DNA could potentially go a long way.”

“There’s a lot of things bacteria do that isn’t fighting off antibiotics,” Sarah said. That includes adding nutrients to soil and promoting plant growth. “We’re very interested in what this means for other bacterial functions as well.”